f07 — Linear Equations (LAPACK) f07ahc

1

NAG C Library Function Document
nag dgerfs (f07ahc)

Purpose

nag_dgerfs (f07ahc) returns error bounds for the solution of a real system of linear equations with multiple
right-hand sides, AX = B or ATX=B It improves the solution by iterative refinement, in order to
reduce the backward error as much as possible.

2

Specification

void nag_dgerfs (Nag_OrderType order, Nag_TransType trans, Integer n, Integer nrhs,

3

const double a[], Integer pda, const double af[], Integer pdaf,
const Integer ipiv[], const double b[], Integer pdb, double x[], Integer pdx,
double ferr[], double berr[], NagError *fail)

Description

nag_dgerfs (f07ahc) returns the backward errors and estimated bounds on the forward errors for the
solution of a real system of linear equations with multiple right-hand sides AX = B or ATX = B. The
function handles each right-hand side vector (stored as a column of the matrix B) independently, so we
describe the function of nag dgerfs (f07ahc) in terms of a single right-hand side b and solution .

Given a computed solution z, the function computes the component-wise backward error (3. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a
perturbed system

(A+6A) = b+ 6b
|6a;j| < Bla;;| and [6b;| < B[by].

Then the function estimates a bound for the component-wise forward error in the computed solution,
defined by:

max |x; — &;|/ max |z;]
7 7

where Z is the true solution.

For details of the method, see the f07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

S Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

trans — Nag TransType Input

On entry: indicates the form of the linear equations for which X is the computed solution as
follows:

[NP3645/7] f07ahe.1

f07ahc NAG C Library Manual

if trans = Nag NoTrans, then the linear equations are of the form AX = B;

if trans = Nag Trans or Nag_ConjTrans, then the linear equations are of the form
ATX =B.

Constraint: trans = Nag _NoTrans, Nag_Trans or Nag_ConjTrans.

3: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

4: nrhs — Integer Input
On entry: r, the number of right-hand sides.

Constraint: nrhs > 0.

5: a[dim| — const double Input
Note: the dimension, dim, of the array a must be at least max(1, pda x n).

If order = Nag_ColMajor, the (7, j)th element of the matrix A is stored in a[(j — 1) x pda + ¢ — 1] and
if order = Nag_RowMajor, the (i, 7)th element of the matrix A is stored in a[(i — 1) x pda + j — 1].

On entry: the n by n original matrix A as supplied to nag_dgetrf (f07adc).

6: pda — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint. pda > max(1,n).

7: af[dim| — const double Input
Note: the dimension, dim, of the array af must be at least max(1, pdaf x n).

If order = Nag_ColMajor, the (i, j)th element of the matrix is stored in af[(j — 1) x pdaf + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix is stored in af[(i — 1) x pdaf + j — 1].

On entry: the LU factorization of A, as returned by nag_dgetrf (f07adc).

8: pdaf — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array af.

Constraint: pdaf > max(1,n).

9: ipiv[dim| — const Integer Input
Note: the dimension, dim, of the array ipiv must be at least max(1,n).

On entry: the pivot indices, as returned by nag_ dgetrf (f07adc).

10: b[dim] — const double Input

Note: the dimension, dim, of the array b must be at least max(1,pdb x nrhs) when
order = Nag_ColMajor and at least max(1, pdb x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (7, j)th element of the matrix B is stored in b[(j — 1) x pdb + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix B is stored in b[(i — 1) x pdb + j — 1].

On entry: the n by r right-hand side matrix B.

f07ahc.2 [NP3645/7]

f07 — Linear Equations (LAPACK) f07ahc

11:

pdb — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraints:

if order = Nag_ColMajor, pdb > max(1,n);
if order = Nag RowMajor, pdb > max(1, nrhs).

12: x[dim] — double Input/Output
Note: the dimension, dim, of the array x must be at least max(l,pdx x nrhs) when
order = Nag_ColMajor and at least max(1,pdx x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix X is stored in x[(j — 1) x pdx + ¢ — 1] and
if order = Nag_RowMajor, the (4, j)th element of the matrix X is stored in x[(¢ — 1) x pdx + 7 — 1].
On entry: the n by r solution matrix X, as returned by nag dgetrs (f07aec).

On exit: the improved solution matrix X.

13: pdx — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

Constraints:
if order = Nag_ColMajor, pdx > max(1,n);
if order = Nag_RowMajor, pdx > max(1, nrhs).

14: ferr[dim] — double Output
Note: the dimension, dim, of the array ferr must be at least max(1, nrhs).

On exit: ferr[j — 1] contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j=1,2,...

15: berr[dim]| — double Output
Note: the dimension, dim, of the array berr must be at least max(1, nrhs).

On exit: berr[j — 1] contains the component-wise backward error bound [for the jth solution
vector, that is, the jth column of X, for j =1,2,...,7.

16: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, nrhs = (value).
Constraint: nrhs > 0.

On entry, pda = (value).
Constraint: pda > 0.

On entry, pdaf = (value).
Constraint: pdaf > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

[NP3645/7] f07ahc.3

f07ahc NAG C Library Manual

On entry, pdx = (value).
Constraint: pdx > 0.
NE_INT 2

On entry, pda = (value), n = {value).
Constraint: pda > max(1,n).

On entry, pdaf = (value), n = (value).
Constraint: pdaf > max(1,n).

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).

On entry, pdx = (value), n = (value).
Constraint: pdx > max(1,n).

On entry, pdx = (value), nrhs = (value).
Constraint: pdx > max(1, nrhs).
NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in
practice they almost always overestimate the actual error.

8 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 4n’ floating-point

operations. Each step of iterative refinement involves an additional 6n”> operations. At most 5 steps of
iterative refinement are performed, but usually only 1 or 2 steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form Az =b
or ATz = b; the number is usually 4 or 5 and never more than 11. Each solution involves approximately
2n’ operations.

The complex analogue of this function is nag_zgerfs (f07avc).

9 Example

To solve the system of equations AX = B using iterative refinement and to compute the forward and
backward error bounds, where

1.80 2.8 2.05 -0.89 9.52 18.47

A— 525 =295 —-095 -3.80 and B — 24.35 2.25
1.58 —-2.69 —-290 —-1.04 0.77 —13.28

—-1.11 —-0.66 —0.59 0.80 —-6.22 —6.21

Here A is nonsymmetric and must first be factorized by nag_dgetrf (f07adc).

f07ahc.4 [NP3645/7]

f07 — Linear Equations (LAPACK) f07ahc

9.1 Program Text

/* nag_dgerfs (f07ahc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{
/* Scalars *x/
Integer berr_len, i, ipiv_len, ferr_len, j, n, nrhs;
Integer pda, pdaf, pdb, pdx;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;

/* Arrays */
double *a=0, *af=0, *b=0, *berr=0, *ferr=0, #*x=0;
Integer *ipiv=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al(J-1)*pda + I - 1]

#define AF(I,J) af[(J-1)*pdaf + I - 1]

#define B(I,J) b[(J-1)*pdb + I - 1]

#define X(I,J) x[(J-1)#*pdx + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J) al(I-1)*pda + T - 1]

#define AF(I,J) af[(I-1)*pdaf + J - 1]

#define B(I,J) b[(I-1)*pdb + T - 1]

#define X(I,J) x[(I-1)*pdx + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("f07ahc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("s*x["\n] ");

Vscanf ("%$1d%1d%*["\n] ", &n, &nrhs);

#ifdef NAG_COLUMN_MAJOR

pda = n;

pdaf = n;

pdb = n;

pdx = n;
#else

pda = n;

pdaf = n;

pdb = nrhs;

pdx = nrhs;
#endif

berr_len = nrhs;

ferr_len = nrhs;

ipiv_1len n;
/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, double)) ||
! (af = NAG_ALLOC(n * n, double)) ||
(b = NAG_ALLOC(n * nrhs, double)) ||
! (berr = NAG_ALLOC(berr_len, double))
L())

[
ferr = NAG_ALLOC(feIr_len, double |

[NP3645/7] f07ahe.5

f07ahc

! (x = NAG_ALLOC(n * nrhs, double))
! (ipiv = NAG_ALLOC (ipiv_len,
{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
3

/* Read A and B from data file,
for (i = 1; i <= n; ++1i)

{

for (j = 1; j <= n; ++3j)
Vscanf ("s1f", &A(i,3));

}
Vscanf ("%*
for (i = 1;

{

for (j = 1; j <= nrhs; ++3)
Vscanf ("s1f", &B(i,3));
}

Vscanf ("$#* [*\n]

")

for (i = 1; i <= n; ++1i)

for (j = 1; j <= n; ++3)
i,j) = A(i,3);

<= n; ++1i)
nrhs; ++3)

1; J <=
= B(llj);

/* Factorize A in the array AF */

fO07adc(order, n, n, af, pdaf, ipiv,
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO07adc.\n%s\n",
exit_status = 1;
goto END;

¥
Vprintf ("\n") ;
/* Compute solution in the array X #*/

Intege

NAG C Library Manual

I
r)))

and copy A to AF and B to X */

&fail) ;

fail.message) ;

fO7aec(order, Nag NoTrans, n, nrhs, af, pdaf, ipiv, x, pdx,
&fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7aec.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Improve solution,

and compute backward errors and */

/* estimated bounds on the forward errors */

fO07ahc(order, Nag _NoTrans, n, nrhs,
pdx, ferr, berr, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f07ahc.\n%s\n",
exit_status = 1;
goto END;
}

/* Print solution x/

x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag,

"Solution(s)", 0, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04cac.\n%s\n",
exit_status = 1;
goto END;

f07ahc.6

a, pda,

af, pdaf, ipiv, b, pdb, x,

fail.message) ;

n, nrhs, x, pdx,

fail.message) ;

[NP3645/7]

f07 — Linear Equations (LAPACK)

Vprintf ("\nBackward errors

fo

Vprintf ("\nEstimated forward error bounds

fo

Vp

}

r (J =1; 3
Vprintf ("s11

r (j = 1; j <= nrhs; ++3)

(machine-dependent)\n") ;

[§-11, §%7==0 2"™\n":" ");

Vprintf ("$11l.1le%s", ferr[j-1]1, j%7==0 2"\n":" ");

rintf ("\n");

END:

if
if
if
if
if
if
if
re

9.2

f07a
4
1.
5.
1.
-1.
9.
24.
0.
-6.

9.3

fO07ahc Example Program Results

Sol

S w N

Back

Estimated forward error bounds

a) NAG_FREE(a);

af) NAG_FREE (af);

b) NAG_FREE (b) ;

berr) NAG_FREE (berr);

ferr) NAG_FREE(ferr);

x) NAG_FREE (x) ;
(ipiv) NAG_FREE (ipiv);

turn exit_status;

(
(
(
(
(
(

Program Data

hc Example Program Data
2

80 2.88 2.05 -0.89
25 -2.95 -0.95 -3.80
58 -2.69 -2.90 -1.04

11 -0.66 -0.59 0.80
52 18.47
35 2.25
77 -13.28
22 -6.21

Program Results

ution(s)
1 2
1.0000 3.0000
-1.0000 2.0000
3.0000 4.0000
-5.0000 1.0000

:Values of N and NRHS

:End of matrix A

:End of matrix B

ward errors (machine-dependent)

5.6e-17 6.2e-17

2.4e-14 3.3e-14

(machine-dependent)

(machine-dependent)\n") ;

f07ahc

[NP3

645/7]

f07ahc.7 (last)

	f07ahc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	trans
	n
	nrhs
	a
	pda
	af
	pdaf
	ipiv
	b
	pdb
	x
	pdx
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

